欧美国产主播在线_欧美日韩综合精品网_91精品福利在线观看麻豆_亚洲中文字幕乱码av波多ji_欧美人妖另类免费看_亚洲精品无码白丝流白浆在线播放_欧美一区一本大道香蕉免费_成人激情在线视频_久久躁狠狠躁夜夜av浪潮_拔萝卜软件开发大全

3dptek logo

Repository

3D printing technology, process, application sharing

2024 2nd 3D printing nature

May 22, 2024

The 2nd Nature article in the field of 3D printing technology in 2024 was published on March 13th. Building on a continuous liquid interface production technique developed at the university in 2015, researchers at Stanford University have developed a 3D printing technique for more efficient production of microscale particles, making up to 1 million micron-sized particles per day with high precision and customizability.

Nano- to micron-scale particles have a wide range of applications in biomedical devices, drug and vaccine delivery, microfluidics, and energy storage systems. However, conventional fabrication methods require balancing multiple factors such as fabrication speed and scalability with particle shape and uniformity and particle properties.
Researchers at Stanford University have developed a scalable, high-resolution r2r CLIP 3D printing process that uses single-digit micrometer resolution optics with continuous film to enable rapid, variable fabrication and harvesting of particles with a variety of materials and complex geometries. With this technology, researchers can achieve micron-level precision 3D printing while maintaining high production speeds and flexibility in material selection, opening up new possibilities for particle manufacturing.

This scalable particle production technology has been demonstrated toManufacturing potential in a wide range of fields from ceramics to hydrogel manifoldsThe research was published under the title "Roll-to-roll, high-resolution 3D printing of shape-specific particles," and subsequently has potential applications in microtooling, electronics and drug delivery. The study was published under the title "Roll-to-roll, high-resolution 3D printing of shape-specific particles".

Source: AMReference

magnifierchevron-down
en_USEnglish