小说排行榜,绝色狂妃 仙魅 小说,小说阅读网 http://www.dollasy.com.cn/en/tag/sha-xing-3d-da-yin/ Tue, 20 May 2025 09:31:24 +0000 en-US hourly 1 https://wordpress.org/?v=6.8.1 http://www.dollasy.com.cn/wp-content/uploads/2024/04/cropped-logo-32x32.png Sand 3D Printing The most complete on the net - SANDY TECHNOLOGY CO. http://www.dollasy.com.cn/en/tag/sha-xing-3d-da-yin/ 32 32 On the first day of the 23rd China Casting Fair, Sanhe Precision, Goodyear Mould and SANDI Technology reached strategic cooperation http://www.dollasy.com.cn/en/news/di23jiezhongguozhubohuikaizhanshourisanhejingmigudemujuyusandikejidachengzhanluehezuo/ Tue, 20 May 2025 09:31:21 +0000 http://www.dollasy.com.cn/?p=2195 On May 20, 2025, Beijing SANDI Technology Co., Ltd. reached a strategic cooperation with Cangzhou Bohai Sanhe Precision Manufacturing Co., Ltd. and Good Mould (Shenyang) Co., Ltd. on the in-depth application of 3DP sand printing technology in the field of casting and mold.

第23屆中國鑄博會開展首日,三和精密、固德模具與三帝科技達(dá)成戰(zhàn)略合作最先出現(xiàn)在三帝科技股份有限公司。

]]>
On May 20, 2025, Beijing SANDI Technology Co., Ltd. reached a strategic cooperation with Cangzhou Bohai Sanhe Precision Manufacturing Co., Ltd. and Goodyear Mould (Shenyang) Co., Ltd. on the in-depth application of 3DP sand printing technology in the field of casting and mold. The partners will rely on 3DP sand printing equipment independently developed by SANDI Technology to promote green, intelligent and high-end casting.

SANDY TECHNOLOGY and GOOD MOLD, SANWA PRECISION reach strategic cooperation 01

Figure: Sanhe Precision and SanDi Technology sign strategic cooperation agreement

SANDI Technology and Goodyear Mold, Sanwa Precision reached a strategic cooperation 02

Figure: Goodyear Mould and SANDI Technology signed a strategic cooperation agreement

Cangzhou Bohai Sanhe Precision Manufacturing Co., Ltd. is a high-end casting head enterprise formed by a joint venture of several enterprises, including Japan Concord Foundry and Tianjin Binrui Trading, focusing on the research, development and production of precision castings for intelligent valve bodies, aviation hydraulic systems, gearboxes and other precision castings. In this cooperation, Sanhe Precision will introduce 3DP sand printing equipment of SANDI Technology to optimize the product development process and improve the production efficiency of complex castings, further consolidate its leading position in the global precision casting market and accelerate the upgrade to intelligent manufacturing.

Goody Mould (Shenyang) Co., Ltd. is a leading precision mold manufacturer in China, focusing on the design and production of molds for complex curved structural components such as industrial machinery, marine pumps and valves. Goody Mould will introduce SANDI's 3DP sand printing equipment for rapid verification of metal molds before development, which will significantly shorten the product development cycle, reduce the cost of the molds, and further enhance its competitiveness in the high-end mold market.

3DPTEK Sand 3d printer

As a leading provider of 3D printing equipment and additive manufacturing services in China, SANDI Technology is committed to providing users in the foundry industry with all-round support from process optimization to production verification through its self-developed 3DP sand printing and SLS sand/wax equipment. In order to meet diversified market demands, based on 30 years of accumulation of powder laying technology, SANDI Technology has formed a complete product line of sand printing equipment, including 1.6m, 1.8m, 2.5m, 4m and other size series, covering the full size of 3DP casting sand printing from millimeter to meter level, which can meet the manufacturing needs of products of different sizes and materials, and, with lower unit cost and shorter delivery time, can help users maximize productivity.

Figure: 3DP casting sand printing equipment independently developed by SANDY Technology3DPTEK-J1600Pro/J1600Plus/J1800/J2500/J4000

From May 20-23, SANDI Technology is showcasing oversized casting sand printing and a full range of 3D casting solutions on-site during the China International Casting Expo, welcome to visit SANDI's booth (Hall S8-A06, Tianjin National Convention and Exhibition Center) to exchange ideas!

The 23rd China Casting Fair

第23屆中國鑄博會開展首日,三和精密、固德模具與三帝科技達(dá)成戰(zhàn)略合作最先出現(xiàn)在三帝科技股份有限公司

]]>
SANDY Technology's Large-Size 3D Casting Solution to Land at China International Foundry Show http://www.dollasy.com.cn/en/news/sandikejidachicun3dzhuzaojiejuefanganjiangdengluzhongguoguojizhuzaozhan/ Wed, 07 May 2025 02:41:47 +0000 http://www.dollasy.com.cn/?p=2171 SANDI Technology - Large Size 3D Casting Solution, Booth A06, Hall S8, Tianjin National Convention and Exhibition Center, welcome to visit us!

三帝科技大尺寸3D鑄造解決方案將登陸中國國際鑄造展最先出現(xiàn)在三帝科技股份有限公司。

]]>

SANDY TECHNOLOGY Booth: Hall S8, Booth A06

The 23rd China International Foundry Expo will be held on May 20, 2025 at the Tianjin National Convention and Exhibition Center (No. 888, Guozhan Avenue, Xianshuigu Town, Jinnan District, Tianjin), and Beijing SANDY Technology Co.

High-precision, large-size 3DP sand printer3DPTEK-J2500

3DPTEK-J2500 is an industrial-grade 3D casting sand printer launched by SANDI Technology, with a large-size molding capability of 2500×1500×1000mm and a high-precision printing capability of ±0.3mm, which is suitable for the manufacture of large castings in the fields of aviation and aerospace, electric power and energy, ships, pumps and valves, and automobiles. The equipment adopts piezoelectric inkjet printing technology, high-resolution inkjet system and special binder formula, which can realize integrated molding of complex structures and avoid the loss of precision of traditional splicing process. Through digital moldless molding technology, it effectively reduces mold development costs and waste emissions, improves casting efficiency and quality, and helps enterprises achieve cost reduction and efficiency and sustainable development. The equipment adopts high-end core components to ensure long-term stable operation.

Sandless Box Large Size 3DP Sand Printer 3DPTEK-J4000

The sandbox-free large-size 3DP sand mold printer 3DPTEK-J4000 launched by SANDI Technology provides an efficient, high-quality and low-cost solution for the manufacturing of ultra-large castings with its disruptive technology. The device adopts sandbox-free flexible area molding technology, breaking through the traditional process of design space limitations, support for local printing, the maximum molding of 4 meters of sand molding, large size, thin-walled, multi-dimensional curved surfaces and complex cavities (such as the spiral cooling waterway) casting integrated molding, and the selling price is very cost-effective. At the same time to provide open-source material process, can be adjusted for the user on demand, supporting high-performance resin binder, curing agent, cleaning agent, to ensure the quality and stability of molding, and further reduce the overall cost.

In order to meet the diversified market demands, SANDI has self-developed 3DP casting sand and SLS casting sand/wax series printers in full sizes from millimeter to meter, which help users maximize productivity with lower unit cost and shorter delivery time.

Figure: 3DP Casting Sand Printer

Figure: SLS Casting Sand/Wax Printer

3D Castingservice

Based on 30 years of 3D printing service and casting experience, SANDI Technology has established full-size, multi-material, and full-chain rapid manufacturing service capabilities through 3D casting factories and printing service centers in Xianyang, Shaanxi, Daiming, Hebei, Pingdingshan, Henan, Yulin, Guangxi, Rizhao, Shandong, Linzhou, Henan, and Tongling, Anhui, etc., and can provide rapid R&D trial production and batch production of finished metal parts made of aluminum alloy, copper alloy, cast iron, cast steel, magnesium alloy, high temperature alloy, and titanium alloy, as well as casting sand and wax 3-D casting service. It can provide users in the fields of aerospace, electric power, ship pump valve, automobile, rail transportation, construction machinery, etc. with rapid research and development of finished metal parts made of aluminum alloy, copper alloy, cast iron, cast steel, magnesium alloy, high-temperature alloy, titanium alloy and other materials for trial production and batch production, as well as casting sand and wax 3D printing services.

Contact: 13811566237

Website:www.dollasy.com.cn

Address: Building 2, No.7 House, Jin Yi Street, Shunyi District, Beijing, China

[About SANDI TECHNOLOGY

3D Printing Technology, Inc. is a 3D printing equipment and rapid manufacturing service provider, a national specialized, special and new "small giant" enterprise, and a typical application scenario supplier of additive manufacturing of the Ministry of Industry and Information Technology (MIIT). At the same time has laser and binder jet 3D printing equipment and materials technology and application process, three emperor technology business covers the development and production of 3D printing equipment, 3D printing raw materials development and production, 3D printing process technology support services, rapid finished parts manufacturing services, etc., to establish a complete 3D printing additive manufacturing industry chain, widely used in aerospace, electric power and energy, ships, pumps and valves, automobiles, rail transportation, industrial machinery, 3C additive manufacturing typical application scenarios, the Ministry of Industry and Information Technology, and the company is a leading supplier of additive manufacturing, Railway transportation, industrial machinery, 3C electronics, rehabilitation and medical treatment, education and research, sculpture and cultural creation and other fields.

三帝科技大尺寸3D鑄造解決方案將登陸中國國際鑄造展最先出現(xiàn)在三帝科技股份有限公司

]]>
3D printing sand casting, a must for traditional foundry owners http://www.dollasy.com.cn/en/blogs/3d-da-yin-sha-xing-zhu-zao-chuan-tong-zhu-zao-chang-lao-ban/ Thu, 20 Mar 2025 08:31:14 +0000 http://www.dollasy.com.cn/?p=2146 This article analyzes the depth of the technology, from the principle, to solve the core problem, to procurement assessment, talent needs, for the foundry bosses comprehensive interpretation. Help you accurately determine whether to introduce this technology, enhance enterprise competitiveness, realize the transformation and upgrading, seize the market opportunities!

3D打印砂型鑄造,傳統(tǒng)鑄造廠老板必看最先出現(xiàn)在三帝科技股份有限公司

]]>
In the traditional foundry industry, sand mold making has always been a key link affecting productivity, cost and molding capability of complex structure castings. With the increasing market demand for high-precision, short-delivery and complex structure castings, the traditional manual molding and mold manufacturing methods have been difficult to meet modern manufacturing requirements. Sand 3D printers, as an advanced additive manufacturing technology, can directly print complex sand molds and cores without the need for molds, dramatically shortening the production cycle, reducing costs, and enhancing design freedom. In this article, we will discuss why traditional foundries should consider introducing sand 3D printing technology to enhance competitiveness, optimize production processes, and meet market demand for efficient and accurate casting. The following is written exclusively for foundry owners, and we hope it will inspire you.

As a foundry owner, do you encounter this situation often?

--Customers want to do small quantities of trial parts, do a metal mold to 200,000, the result of the order is only 50 pieces, a calculation found that the mold cost more than the money earned, can only give up the order!
--The customer had an order for an aerospace part with honeycomb structure, and the traditional sand core assembly error was bigger than the part size, so it was a big headache to stare at the scrapped casting!
--Competitors with 3D printing took a well-known automotive battery pack orders, their own offer is lower than others 30% or did not win the bid, and finally inquired about the delivery of people faster than us 2 months, very helpless!

--Customers do not move to change the design of the warehouse piled up more than 300 sets of scrap molds, checking the accounts found that the mold inventory occupied half a year of profit, which is too painful to taste!

--Customers sent a complex structure of the pieces over, and said that the price is not a problem, an assessment found that the traditional casting process can not be done, looking at such a high value-added orders can only be given up!

Below we help all bosses one by one to sort out clearly, an article to let you fully understand the 3D printing sand casting technology!

What is sand 3D printing?

Sand 3D printing is a relatively new technology, simply put, is like building blocks, with special materials layer by layer "pile" out of the casting sand.

In the past, the traditional method of making sand molds may need to make molds first, and then use the molds to shape, the process is more complicated, and if you want to make some sand molds with very strange and complex shapes, it will be particularly difficult and costly. But sand 3D printing is different, it works with a 3D model in your computer. You input the data of the 3D model of the designed casting into the 3D printer, and the printer will, according to the shape and structure of the model, put special sand or sand-like materials, according to the layer by layer in a precise way and bonded up, just like using countless thin "sand pieces" gradually built into a complete sand mold. In this way, no matter how complex the shape, as long as it can be designed in the computer, it can be printed out, and the speed is quite fast, and do not need to make complex molds like the traditional method, can save a lot of time and cost it.

Principle of Sand 3D Printer

Sand 3D printing is usually done usingBinder Jetting (BJ)The basic principle is as follows:

  1. spread sand: The printer spreads a specific casting sand (e.g. silica sand, ceramic sand or coated sand) evenly over the printing platform.
  2. spray binder: The spray nozzles precisely spray the binder according to a computer model (CAD data) to bond the sand grains in a specific area.
  3. pile up repeatedly: The platform is lowered, sand is spread again and the binder is sprayed, curing and molding layer by layer until the entire sand print is completed.
  4. reprocess: Remove unbonded loose sand, harden and clean the printed sand model, which can then be used for metal casting.

What are the core problems addressed by 3D printed sand casting?

The existence or birth of each technology must have its "mission". Commonly known as a solution to a particular problem, to meet market demand, this is the value of its existence. Below we take a look at the sand 3D printing technology to solve the thorny problems encountered in the traditional casting, as follows:

  • Manufacture of complex shaped partsTraditional sand casting to manufacture complex shapes is difficult and costly, such as aviation engine blades inside the fine cooling channels, traditional processes are difficult to accurately mold. 3D printing sand based on digital models, can easily turn complex shapes into reality, from the dense concave, raised automotive engine block sand, to have a subtle biomimetic structure of the shell of the medical device sand, can be perfectly rendered.
  • long production lead timeTraditional sand casting need to go through a long process of designing molds, manufacturing molds, debugging molds, large-scale mold manufacturing cycle often exceeds a few months. 3D printing sand without mold production, directly according to the digital model printing, design modification is only required to operate the model on the computer, reprinting can be, can significantly shorten the production cycle. Such as research and development of new automotive engine block, the traditional casting mold scrap remake at least two weeks, 3D printing sand can be completed on the day of the new model printing, the next day can be put into casting.
  • Difficulty in cost controlTraditional casting mold manufacturing material waste is serious, the utilization rate of complex mold materials is less than 30%, and high labor costs. 3D printing sand on-demand printing, accurate sand, material utilization rate of more than 90%, reduce waste. High degree of automation of the printing process can reduce labor costs. Take a small foundry as an example, with an annual production capacity of 5,000 pieces of small pipe fittings castings, after the introduction of 3D printed sand, the material cost will be reduced by 150,000 yuan per year, and the labor cost will be cut by 200,000 yuan.
  • Low precision of castingsThe traditional sand mold due to mold wear, parting surface fitting error, casting size deviation often exceeds ±1mm, subsequent machining allowance, material waste, and prone to local loosening, sand entrapment and other defects, resulting in uneven mechanical properties of the casting. 3D printing of the sand model by the digital model of the precise drive, sand size accuracy of up to ±0.5mm, can achieve uniform compactness, to avoid uneven sand loose, and at the same time optimize the solidification process to significantly reduce shrinkage holes, shrinkage, to ensure reliable internal quality of the casting. At the same time, the solidification process is optimized, greatly reducing shrinkage holes and shrinkage loosening, and ensuring stable and reliable internal quality of castings.
  • High environmental pressureTraditional casting mold manufacturing produces a large amount of waste metal, waste plastic, sand processing waste sand piles up. 3D printing sand production, unused sand can be recycled and reuse, very little waste, and the printing process does not require a large number of chemical binders, reducing the emission of hazardous gases, and improve the workshop environment. According to statistics, after the adoption of 3D printing sand mold, the casting workshop waste emissions reduced by more than 80%, dust, harmful gas concentration of environmental standards.

How does a foundry evaluate if they need to buy a sand 3d printer?

The price of a sand 3D printer is not cheap (usually the larger the size the more expensive), to buy is relatively cautious, especially small and medium-sized foundries. In order to help bosses to assess whether there is a need to buy, we have specially organized the following some evaluation points, to give the boss of the traditional foundry a reference, and then according to their own situation to decide whether to buy:

production requirement

  • Product complexity: If the foundry often produces complex shapes, castings with fine structure or internal channels, such as aero-engine blades, automobile cylinder blocks, etc., the traditional process is difficult to meet the requirements, sand 3D printer can play an advantage.
  • Production size and lot size: For small-volume, multi-variety casting production, sand 3D printers offer the flexibility to quickly switch products without the need to make molds, reducing costs and cycle time. However, for large-scale, single-species castings, traditional processes may be more cost-effective.
  • Delivery period requirementsThe sand 3D printers allow for shorter lead times and quicker order response if the customer has stringent lead times.

cost-effectiveness

  • Investment in equipmentThe cost of purchasing a sand 3D printer, installation and commissioning costs, and maintenance costs need to be taken into account.
  • running cost: Includes printing materials, energy consumption, and labor costs. Compare with the traditional casting process and analyze the high and low long-term running costs.
  • potential gainConsider the potential benefits of using sand 3D printers in terms of improved product quality, shorter cycle times, and lower scrap rates.

technical capability

  • Employee Skills: Evaluate how well your current employees know 3D printing technology and whether you need to train or recruit specialized talent.
  • Technical Support: To understand the technical support capability of the equipment supplier, including whether the services such as installation and commissioning, training and fault repair are timely and effective.

market competition

  • Industry Trends: Keep an eye on your peers to see if they are already adopting sand 3D printing, and if competitors are already using it and gaining an advantage, foundries may need to consider purchasing it in order to remain competitive.
  • client needThe purchase of sand 3D printers can help to meet the needs of customers who want to see foundries adopting advanced technologies to improve product quality and productivity, as well as to increase their competitiveness in the marketplace.

environmental requirement

  • If the local environmental protection requirements are strict, the traditional casting process is under great pressure in terms of waste sand treatment and exhaust gas emission, etc., sand 3D printers can help enterprises meet the environmental protection requirements due to the advantages of high material utilization rate and low waste.

What kind of talent is needed for sand 3D printing?

Considering that many traditional foundry enterprises may not be equipped with 3D printing sand casting related professionals, we have specially organized the position of workers need to have what aspects of the skills and usual job duties, so that factories in the recruitment of reference.

Professional Requirements:

  1. Mechanical Engineering, Materials Science, Foundry Engineering, Additive Manufacturingand other related majors;
  2. Familiarity with sand 3D printing (Binder Jetting) technology and experience in operating related equipment is preferred;
  3. skillful useCAD, 3D modeling software (e.g. SolidWorks, AutoCAD, Magics, etc.), with basic data processing skills;
  4. Understand the casting process, familiar with sand material properties, post-treatment process and common casting defects analysis;
  5. Ability to maintain and troubleshoot equipment and independently solve common problems in equipment operation;
  6. Good teamwork skills, able to work closely with casting engineers and production team to optimize the production process;
  7. Strong learning ability to quickly grasp new technologies and a keen interest in the application of additive manufacturing in the foundry industry.

Job Description:

  1. be in charge ofSand 3D Printerday-to-day operations, including equipment commissioning, print job execution and quality control;
  2. Process 3D printing data, including CAD model optimization, slicing and printing parameter settings;
  3. Supervise the printing process to ensure that the quality of the sand mold meets the casting requirements and that the necessary post-processing (e.g., cleaning, hardening, etc.) is performed;
  4. Responsible for the maintenance of equipment, troubleshooting and solving problems in the printing process to ensure stable equipment operation;
  5. Collaborate with the casting technology team to optimize the process of 3D printing sand molds to improve casting quality and production efficiency;
  6. Research and introduce new materials and processes to continuously improve the application of sand 3D printing in casting production;
  7. Responsible for in-house training of personnel on 3D printing technology to improve the overall technical level of the team.

summarize

In summary, sand 3D printing technology has brought many opportunities and changes for traditional foundries, which can effectively solve a series of thorny problems faced by the traditional casting process, such as the manufacturing of complex shaped parts, long production cycle, difficult to control the cost, poor casting accuracy and environmental protection pressure. Through a comprehensive assessment of production demand, cost-effectiveness, technical capabilities, market competition and environmental requirements, foundry owners can be more scientific and rational judgment whether to introduce sand 3D printer. Equipped with professional technical personnel, is to ensure that this technology in the foundry in the smooth landing, play the key to maximize performance.

In the increasingly competitive foundry market, take the initiative to embrace new technologies, and actively make changes, may be able to seize the first opportunity to realize the transformation and upgrading of enterprises and sustainable development. For traditional foundries, sand 3D printing technology is not only a technology change, but also a breakthrough in the development of bottlenecks, enhance core competitiveness of the perfect opportunity. I hope that all foundry bosses can combine the actual situation of their own enterprises, fully weigh the pros and cons, to make the most suitable for the long-term development of the enterprise's decision-making, so that the enterprise in the tide of the times to ride the waves, sailing to a broader market blue sea.

3D打印砂型鑄造,傳統(tǒng)鑄造廠老板必看最先出現(xiàn)在三帝科技股份有限公司。

]]>
What core problem do sand 3D printers solve? This article tells you the truth http://www.dollasy.com.cn/en/blogs/sand-3d-printers-solve-core-problems/ Sun, 12 Jan 2025 08:24:49 +0000 http://www.dollasy.com.cn/?p=2083 Many foundries want to buy sand 3D printer but it is not very understanding of what it can solve the core problem, read this article you will be able to understand everything, you can make a preliminary guidance on whether to purchase equipment.

砂型3D打印機(jī)解決了什么核心問題?這篇文章告訴你真相最先出現(xiàn)在三帝科技股份有限公司。

]]>
In modern manufacturing, casting process has been an important method to produce complex metal parts. However, the traditional casting process faces many challenges, such as the difficulty of molding complex structures, limited customized production, long production cycle, difficult cost control, unstable product quality and environmental issues. With the rapid development of 3D printing technology, sand 3D printers have emerged as a revolutionary tool to solve these problems. In this article, we will delve into how sand 3D printers have changed the foundry industry and analyze the multiple advantages they bring (what core problems they solve).

1. Addressing the limitations of traditional casting processes

Difficulty in molding complex structures 

Conventional casting processes often face enormous technical difficulties and high costs when manufacturing sand molds of complex shapes. For example, aircraft engine blades usually have fine and complex cooling channels inside, the traditional process of manufacturing such molds is extremely difficult. The sand 3D printer through digital modeling and layer-by-layer printing technology, can easily achieve the manufacture of complex shapes of sand molds, greatly reducing the technical threshold and cost.

Customized production is limited 

With the rise of personalized consumption and niche markets, the demand for small-lot, customized castings is growing explosively. However, the traditional casting process, with its high mold opening costs and long customization cycle, is difficult to meet the market's rapid response needs. Sand 3D printers do not require molds and are able to quickly design and print sand molds according to customers' special specifications, shapes and performance requirements, greatly improving the flexibility and efficiency of customized production.

2. Enhancing production efficiency and cost control

long production lead time

Traditional sand casting requires a lengthy process of designing the mold, manufacturing the mold, commissioning the mold, etc. The manufacturing cycle for large molds often exceeds several months. During the period may also be due to design changes or mold defects lead to rework, further extending the production cycle. Sand 3D printers do not need to make molds, directly according to the digital model printing, can significantly shorten the product development cycle, improve production efficiency.

Difficulty in cost control

In the traditional casting mold manufacturing process, the material waste is serious, and the material utilization rate of complex molds is less than 30%. In addition, from the molders to the molding workers, mold repair workers, the manpower investment is large, which further pushes up the cost. Sand 3D printer on-demand printing, accurate sand, material utilization rate of more than 90%. high degree of automation in the printing process, reducing the cost of manpower, significantly reducing production costs.

3. Improving product quality

Low dimensional accuracy

Traditional sand mold due to mold wear, parting surface fitting errors and other issues, casting size deviation often exceeds ± 1mm, subsequent machining allowance, material waste. Sand 3D printer by the digital model precision drive, sand size accuracy up to ± 0.5mm or less, reducing the machining process, reducing costs.

Uneven internal quality

Traditional sand molds are prone to localized looseness, sand entrapment and other problems, resulting in uneven mechanical properties of castings, prone to cracks and other defects. Sand 3D printer can achieve uniform compactness, to avoid uneven sand loose, and at the same time, optimize the solidification process, significantly reduce shrinkage holes, shrinkage, to ensure stable and reliable internal quality of the casting, to enhance the performance and service life of the product.

4. Environmental advantages

Traditional casting mold manufacturing produces a large amount of waste metal, waste plastic, sand processing waste sand piles up. The annual capacity of 10,000 tons of castings of the factory, the annual emissions of waste sand more than 5,000 tons, high treatment costs and pollution of the environment. Sand 3D printer in the production, unused sand can be recycled and reuse, very little waste. In addition, the printing process does not require a large number of chemical binders, reducing the volatilization of harmful gases and improving the workshop environment.

5. Reasons why foundries deserve sand 3D printers

Improvement of production efficiency

Sand 3D printer can quickly respond to market demand, especially suitable for frequent re-modeling of small batch products. It allows foundries to quickly meet customers' individual customization needs and improve customer satisfaction and market competitiveness. At the same time, the sand 3D printer supports mass production, which can print a large number of high-quality sand molds in a short period of time to meet the needs of large-scale production and improve production efficiency and yield.

Reduced production costs

Sand 3D printing technology directly prints sand molds without opening molds, thus greatly reducing the cost of opening molds, especially suitable for small batch and complex structure production needs. In addition, sand 3D printing equipment can be operated with only simple training, and does not require a lot of manpower synergy, which can effectively reduce the dependence on skilled workers, so that foundries can easily cope with the recruitment difficulties and expensive labor problems.

Enhancing Product Quality

Sand 3D printers are more accurate, such as the3DPTEKof 3D printing equipment, which means that the dimensional accuracy of castings is dramatically improved, the one-time pass rate of products is significantly increased, the scrap rate is reduced, and the foundry is allowed to utilize its resources more efficiently. At the same time, the 3D printed sand mold has better precision and surface quality, reduces the amount of grinding and finishing work, makes the production process cleaner, and improves product quality and process consistency.

Optimization of production management

With a compact body design, the sand 3D printer occupies a small area and is flexible to install, which is suitable for the different site layout requirements of small and medium-sized foundries. Modular production solutions can also support easy expansion of enterprises to achieve multi-machine linkage. Part of the sand 3D printer support digital monitoring system, business managers can monitor the production progress and equipment status in real time, to achieve a fully controllable production process, equipment operation data can be automatically stored to facilitate the optimization of production strategies.

6. Concluding remarks

The emergence of sand 3D printers not only solves many problems in the traditional casting process, but also brings unprecedented opportunities for the foundry industry. It provides foundries with strong competitiveness by improving production efficiency, reducing production costs, improving product quality and optimizing production management. With the continuous progress of technology, sand 3D printers will play an increasingly important role in the future of the manufacturing industry, promoting the foundry industry to a more efficient, more environmentally friendly and smarter direction.

砂型3D打印機(jī)解決了什么核心問題?這篇文章告訴你真相最先出現(xiàn)在三帝科技股份有限公司。

]]>
Explore sandbox-free 3D printers http://www.dollasy.com.cn/en/blogs/tan-suo-wu-sha-xiang-3d-da-yin-ji/ Tue, 24 Dec 2024 09:25:00 +0000 http://www.dollasy.com.cn/?p=1940 This article explores sandbox-less 3D printers and how they can provide dimensional flexibility, high accuracy, cost-effectiveness, and design freedom from the limitations of traditional sandboxes to improve manufacturing efficiency. At the same time, it provides readers with an understanding of the innovative value and growth potential of sandbox-less 3D printers in the foundry sector.

探索無砂箱3D打印機(jī)最先出現(xiàn)在三帝科技股份有限公司。

]]>
This article explores sandbox-less 3D printers and how they can provide dimensional flexibility, high accuracy, cost-effectiveness, and design freedom from the limitations of traditional sandboxes to improve manufacturing efficiency. At the same time, it provides readers with an understanding of the innovative value and growth potential of sandbox-less 3D printers in the foundry sector.

Why is it called a sandbox-less 3D printer?

The boxless 3D printer is so named because it eliminates the use of a traditional box in the sand 3D printing process, significantly differentiating it from conventional sand 3D printers. Here's more about it from a variety of perspectives:

The role and limitations of traditional sandboxesSandboxes are an indispensable part of the traditional sand casting process and some traditional sand 3D printing techniques. It is used to hold the sand, provide molding space for the sand model, ensure that the sand maintains a specific shape during the molding process, and ensure the integrity of the sand model during transportation and box closing. However, the fixed size of the sand box limits the size of the sand mold that can be produced, and the production and maintenance costs are high. For the complex structure of the sand mold, the sand box is difficult to design and manufacture, and it may also affect the heat dissipation and air permeability of the sand mold, which may affect the quality of the castings.

How sandless box 3D printers work: The sandbox-less 3D printer adopts sandbox-less flexible area molding technology, in which abrasive and binder are stacked and molded layer by layer by the nozzle directly on the worktable. The equipment has a precise sand spreading system, which can evenly spread the sand material in the printing area, and the nozzle accurately sprays the binder according to the model cross-section information, so that the sand particles are bonded to form the sand shape layer by layer. In this process, there is no need for a sand box to provide molding space and constraints, which greatly improves printing flexibility and freedom.

Basis of namingThe naming of the 3D printer directly reflects its core technical feature, which is that it is free from the constraints of the traditional sand box, creating a new mode of sand 3D printing. This naming scheme is simple and clear, highlighting the essential difference with the traditional sand 3D printing equipment, and emphasizing its unique advantage of realizing high-precision and high-efficiency manufacturing of sand patterns without the assistance of a sand box during the printing process.

Sandless Box 3D Printer vs. Traditional Sand 3D Printer

There is a clear difference between the working principle of a boxless 3D printer and that of a traditional sand 3D printer. Traditional sand 3D printers rely on a fixed sand box to define the molding space, and rely on the sand box to provide partial support, and the print path is limited by the sand box; while sand box 3D printers use flexible area molding technology, expanding the printing platform on demand, breaking through the size limitations, and supplying the sand and binder with greater precision, and adjusting the internal sand buildup and binder injection to provide support, so the print path is more freely and flexibly planned, and it can effectively improve the printing efficiency and sand quality. It can effectively improve the printing efficiency and the quality of the sand mold.

3dptek-J4000 Sand Mold 3D Printer
Large-size sandbox-less 3D printer: 3DTEPK-J4000

Prospects for sandbox-less 3D printers in the foundry sector

The development of sandbox-free 3D printers in the foundry field is very promising, mainly in the following aspects:

Technological innovation and breakthroughs

Sandbox-free 3D printers continue to realize technological innovations, such as SANDI's 3DPTEK-J4000 Adoption of sandbox-less flexible area molding technology, can be customized to expand the printing platform, the maximum molding 4 meters of sand, to meet the production needs of 10 meters + level, breaking through the traditional casting equipment size limitations, for the manufacture of large and complex castings to provide the possibility of.

Significant cost advantages

On the one hand, the cost of ownership is reduced, as the price of 4-meter and larger boxless 3D printers is comparable to that of 2.5-meter machines, allowing companies to obtain larger sizes of abrasive molds at a lower cost per unit. On the other hand, material waste is reduced, as boxless 3D printers allow precise use of materials such as sand and binder, reducing production costs.

Strong growth in market demand

Aerospace, automotive, energy power and other fields of large, complex, high-precision castings demand continues to rise. For example, the manufacture of aircraft engine components, automotive engine block, etc., sandless 3D printers can meet the high-performance requirements for castings in these fields, the market potential is huge.

Significant increase in design freedom

The sandless box 3D printer can manufacture complex geometric shapes and cavities that are difficult to achieve by traditional methods, realizing parts integration and lightweight design, providing more space for product innovation and helping to improve product performance, reduce costs and enhance the market competitiveness of enterprises.

Significant increase in productivity

Compared to traditional mold making methods, sandbox-less 3D printing of sand molds or cores takes only a few hours to a few days, dramatically shortening the development and production cycle of new products, helping manufacturers respond faster to changes in market demand, and improving productivity and economic efficiency.

Superior environmental performance

Sandless 3D printers use materials on demand, reducing waste and disposal costs of leftover materials, and some of the equipment can use environmentally friendly materials and binders, which reduces environmental pollution, meets the requirements of sustainable development, and helps foundry companies to meet the increasingly stringent restrictions of environmental regulations.

Deepening Industrial Integration

The integration of sand box 3D printer and foundry is deepening, enterprises through mergers and acquisitions of foundries and other ways to open up the "3D printing + casting" process, to provide the whole industry chain overall solution, and promote the foundry industry to the green, intelligent, high-end direction of development.

探索無砂箱3D打印機(jī)最先出現(xiàn)在三帝科技股份有限公司

]]>
Why buy a sand mold 3D printer http://www.dollasy.com.cn/en/blogs/why-buy-a-sand-mold-3d-printer/ Fri, 25 Oct 2024 07:34:37 +0000 http://www.dollasy.com.cn/?p=1729 An article that allows you to figure out once and for all why you need to buy a sand mold 3D printer and what unique value and advantages it can actually bring to the table. Follow 3DPTEK and take your casting business to the next level.

為什么要購買砂模3D打印機(jī)最先出現(xiàn)在三帝科技股份有限公司。

]]>
In today's fast-moving manufacturing sector, sand mold 3D printers are emerging as the center of attention for many businesses. So why buy a sand mold 3D printer? What unique value and advantages does it bring to the table?

sand mold 3d printers
3DPTEK Sand Mold 3D Printer

I. High-precision and complex structure manufacturing capability

Sand mold 3D printers are able to create sand molds with extreme precision, which is essential for producing high-quality castings. While traditional methods of sand mold making are often overwhelmed by the complexity of the structures, 3D printing makes it easy. It is able to accurately reproduce every detail of a design drawing, whether it is a complex internal cavity, a fine texture or a thin-walled structure. This high-precision manufacturing capability not only improves the dimensional accuracy and surface quality of the castings, but also reduces subsequent machining processes and production costs. For example, in the aerospace field, some key components require extremely high precision, and sand mold 3D printers can produce sand molds that meet strict standards, thus ensuring the quality and performance of the final casting, and meeting the demanding requirements of aerospace products for safety and reliability.

II. Shortening the production cycle

The traditional sand mold production process is usually more cumbersome, need to go through the mold design, production, assembly and other aspects, consuming a lot of time. Sand mold 3D printer greatly simplifies this process, it can be directly based on the digital model of the sand mold layer by layer printing, without the need to make molds and complex assembly operations. This shortens the production cycle significantly, enabling companies to bring products to market faster and seize the first opportunity. Taking automobile manufacturing as an example, the development cycle of new models is often very tight, sand mold 3D printer can make sand molds for automobile engines and other parts in a short period of time, accelerating the trial production process, helping enterprises to verify and optimize their products faster, and improving the overall research and development and production efficiency.

III. Cost reduction

The purchase of a sand mold 3D printer requires a certain initial investment, but in the long run, it can bring significant cost reductions for enterprises. On the one hand, as mentioned earlier, it reduces the mold making and assembly in the traditional sand mold making process, reducing labor costs and mold costs. On the other hand, as 3D printing can realize high-precision manufacturing, it reduces the scrap rate and subsequent processing costs. In addition, 3D printing technology can also optimize the design of the sand mold, so that it meets the requirements of the premise of more lightweight, thus reducing the use of casting materials, further reducing costs. For some small batch but a variety of products for the enterprise, sand mold 3D printer cost advantage is more obvious, because it does not need to make a special mold for each product, greatly reducing the production cost and inventory pressure.

IV. High degree of design freedom

Sand mold 3D printers offer designers a high degree of design freedom. Traditional manufacturing processes are often limited by the structure of the mold and the manufacturing method, and designers need to consider many process factors when designing a product, thus compromising the design. 3D printing technology, on the other hand, breaks down these limitations and allows designers to give full play to their imagination and design more innovative and unique product structures. For example, they can design castings with complex internal runners to optimize product performance, such as improving heat dissipation efficiency or fluid flow performance. This increased design freedom not only helps companies develop more competitive products, but also promotes innovation in the industry as a whole.

V. Personalization

With the diversification of market demand and the trend of individualization becoming more and more obvious, personalized customization has become an important development direction of the manufacturing industry. Sand mold 3D printer can precisely meet this demand, it can according to the customer's specific requirements, quickly create a unique sand mold, to achieve personalized custom production. Whether it is a single piece of customization or small batch customization, sand mold 3D printer can easily deal with. This is important for some high-end equipment manufacturing, medical equipment and other fields.

VI. Environmental protection and sustainable development

In today's era of environmental protection and sustainable development, sand mold 3D printers also have certain advantages. The traditional sand mold production process will produce a large number of waste and pollutants, such as waste mold materials, chemical reagents, etc., causing greater pressure on the environment. The sand mold 3D printer in the manufacturing process is relatively more environmentally friendly, it is mainly used in sand and other environmentally friendly materials, and can be optimized through the design and printing parameters to reduce the waste of materials. In addition, because 3D printing technology can achieve precision manufacturing, reducing the production of scrap, further reducing the impact on the environment. Therefore, the purchase of sand mold 3D printers is in line with the company's environmental philosophy and social responsibility, and helps the company achieve sustainable development.

To sum up, purchasing sand mold 3D printer has many advantages, including high precision and complex structure manufacturing ability, shorten the production cycle, reduce costs, high design freedom, personalized customization and environmental sustainability. For modern manufacturing enterprises, sand mold 3D printer is not only a kind of advanced production equipment, but also an important tool to enhance the competitiveness of enterprises and realize innovative development and sustainable development. With the continuous progress of technology and the continuous expansion of the application, I believe that the sand mold 3D printer will play an important role in more areas, for the development of the manufacturing industry to bring new opportunities and changes. Therefore, when considering the production upgrade and development strategy of enterprises, the purchase of sand mold 3D printer is a choice worth serious consideration.

為什么要購買砂模3D打印機(jī)最先出現(xiàn)在三帝科技股份有限公司

]]>
China's latest large-size sand 3D printer: innovation to lead the change of the foundry industry http://www.dollasy.com.cn/en/blogs/latest-large-size-sand-3d-printer/ Fri, 25 Oct 2024 05:50:45 +0000 http://www.dollasy.com.cn/?p=1723 Domestic super-large sand 3D printer, breaking through the size limitations, using innovative technology, the maximum molding 4 meters of sand and can be customized to expand. Economical and efficient, breaking the strange correlation between price and size.

國產(chǎn)最新大尺寸砂型 3D打印機(jī):創(chuàng)新引領(lǐng)鑄造業(yè)變革最先出現(xiàn)在三帝科技股份有限公司。

]]>
In today's era of rapid development of science and technology, 3D printing technology with its unique advantages in various fields set off a wave of change, the foundry industry is no exception. The latest domestic sand 3D machine --3DPTEK-J4000 The introduction of ultra-large sand 3D printers has brought new vitality and vigor to the foundry industry, showing strong innovative power and broad application prospects. Here is an introductionDefinition and shopping for large format sand 3D printersThe article.

This sand 3D machine is a technological breakthrough. It adopts the sandbox-less flexible zone molding technology, an innovation that allows it to mold sand molds up to 4 meters in size, and can customize the extended printing platform according to the actual needs, even to meet the production needs of the 10 meter + level, and the 7 meter machine is now available for pre-order. This breakthrough breaks the traditional casting equipment in the size of the limitations, for the production of large castings to provide the possibility. In the past, the manufacture of large sand molds faced many difficulties, not only requiring huge equipment and complex processes, but also high costs and low efficiency. The emergence of 3DPTEK-J4000 has changed this situation, making the manufacture of large sand molds more convenient and efficient.

In terms of economic performance, this domestic sand 3D machine also has significant advantages. It breaks the conventional phenomenon that the larger the molding size of the equipment, the higher the price, 4 meters and larger size equipment and 2.5 meters equipment price difference. This means that companies can obtain larger sand molding capacity at a lower unit cost, significantly reducing production costs. At the same time, the shorter delivery time also improves productivity and enhances market competitiveness. In today's fierce market environment, cost and efficiency are the key factors for the survival and development of enterprises, 3DPTEK-J4000 undoubtedly provides strong support for foundry enterprises.

In terms of equipment parameters, 3DPTEK-J4000 also demonstrates its professionalism and advancement. The main body covers an area of 21000×7000×4000mm and weighs about 45t, such a huge body contains fine craftsmanship. The resolution of the nozzle is up to 400dpi, which can guarantee the precision and quality of the sand mold, and the molding thickness is between 0.2 - 0.5mm, which can meet the requirements of different castings. In terms of molding materials, it is compatible with quartz sand, ceramic sand and other materials, providing more choices for enterprises.

3DPTEK-J4000 The application areas are wide-ranging and cover a number of important industries such as aerospace / space, high voltage electrics, energy power, industrial machinery / marine pumps and valves, automotive (fuel / new energy) and many others. In the aerospace industry, high precision sand molding is essential for manufacturing complex aero-engine components and spacecraft structures. This sand molding 3D machine can meet the strict requirements of aerospace parts for precision and performance, providing strong technical support for the development of China's aerospace industry. In the automotive industry, whether it is a fuel-fired vehicle or a new energy vehicle, the manufacture of key components such as engine blocks and transmission cases requires high-quality sand molding. 3DPTEK-J4000 can be used to improve the manufacturing precision and efficiency of automotive parts, reduce production costs, and improve the overall performance and quality of the automobile.

3dptek-J4000
3dptek-J4000 Sand 3D Printer

In addition, 3DPTEK-J4000 also focuses on after-sales service, good after-sales service is an extension of product quality, which can make users feel more at ease in the process of use, solve problems encountered in a timely manner, and ensure the smooth progress of production.

The appearance of the latest domestic large-size sand 3D machine 3DPTEK-J4000 is the result of the continuous innovation and development of China's manufacturing industry. With its advanced technology, superior performance, wide range of applications and perfect after-sales service, it brings brand new development opportunities for the foundry industry. Here is an article discussing in detail asWhat to buy sand 3D printerThe

In the future, with the continuous progress of 3D printing technology and the in-depth promotion of its application, I believe that this sand 3D machine will play an important role in more fields, promote the development of manufacturing industry to the direction of high-end, intelligent and green, and inject a new impetus for high-quality development. We also look forward to domestic 3D printing technology can continue to innovate, make more breakthroughs, in the international arena to show the strong strength of China's manufacturing industry.

國產(chǎn)最新大尺寸砂型 3D打印機(jī):創(chuàng)新引領(lǐng)鑄造業(yè)變革最先出現(xiàn)在三帝科技股份有限公司。

]]>
The Business Value of Sand Casting 3D Printers in the Foundry Industry http://www.dollasy.com.cn/en/blogs/the-business-value-of-sand-casting-3d-printers/ Wed, 23 Oct 2024 07:10:51 +0000 http://www.dollasy.com.cn/?p=1711 An article that provides a comprehensive understanding of the business value of sand 3D printers in the foundry line. A must-read article for foundries who have plans to purchase sand 3D printers.

砂型鑄造3D打印機(jī)在鑄造業(yè)中的商業(yè)價(jià)值最先出現(xiàn)在三帝科技股份有限公司

]]>
From a foundry's perspective, industrial sand 3D printers can deliver significant business value. Here are some of the key points that foundries are most concerned about:

Improve foundry efficiency

  • Reduced mold costs: With industrial sand 3D printing there is no need to make expensive molds, reducing overall production costs.
  • Increasing productivity: Additive manufacturing enables rapid production of sand molds and cores, shortening lead times and increasing productivity.
  • Reduced labor costs: Automated 3D printing of sand molds minimizes the labor costs associated with traditional manual molding and core making processes.

Improvement of casting quality

  • Improved accuracy and consistency: Industrial sand 3D printing ensures accuracy and consistency in the production of sand molds and cores, resulting in higher quality castings.
  • Reduced defect rate: Additive manufacturing minimizes the risk of human error, reducing defect rates and the need for rework or scrap.
  • Production of structurally complex parts: Sand 3D printing is capable of producing complex geometries and detailed designs that are difficult or impossible to achieve with traditional methods. Think back, don't you often come across pieces with very complex structures that are so costly or even impossible to produce using traditional casting methods that you end up having to give up on the order. With sand mold 3D printers, these are no longer problems.

Cost savings and competitiveness

  • Reduction of material waste: Industrial sand 3D printing minimizes material waste, reduces costs and lowers environmental impact.
  • Reduced production costs: Additive manufacturing can reduce production costs by as much as 50% compared to traditional methods.
  • Improving competitiveness: Foundries using industrial sand 3D printing can gain a competitive advantage in terms of cost, quality and delivery time.

Design and production flexibility

  • Design for Additive Manufacturing: Industrial sand 3D printing enables foundries to produce complex designs that were previously impossible or impractical.
  • Rapid Prototyping and Production: Additive manufacturing enables rapid prototyping and production, allowing foundries to respond quickly to changing customer needs.
  • Production Flexibility: Sand 3D printing enables foundries to produce small batches or one-off castings, ideal for small production runs or prototyping.

Other key advantages

  • Improved security: Industrial sand 3D printing reduces the risk of accidents and injuries associated with traditional molding and coremaking processes.
  • environmental benefit: Additive manufacturing minimizes material waste, reduces energy consumption and enables the use of recycled materials.
  • Data-driven production: Industrial sand 3D printing enables data-driven production, enabling foundries to monitor and optimize their production processes in real time.

By adopting industrial sand 3D printers, foundries are able to increase efficiency, improve casting quality, reduce costs and increase competitiveness, ultimately realizing increased profitability and business success.

Sand casting 3D printer
Sand casting 3D printer

Traditional foundries face a number of challenges and difficulties, including:

  • Tooling costs and lead times: Making molds and models is a time-consuming and expensive process that can take weeks or even months to complete.
  • Labor costs and shortages: Foundry work requires skilled labor, which may be difficult to find and retain in areas with labor shortages.
  • Material waste and energy consumption: Conventional casting processes lead to significant material waste and energy consumption, which can increase costs and have an environmental impact.
  • Quality control and defect rates: Achieving consistent quality and minimizing defect rates can be challenging, especially for complex geometries and high volume production.
  • Complexity and design constraints: Conventional casting methods make it difficult to produce complex geometries, fine designs and thin-walled castings.
  • Increased global competition: Foundries face increasing competition from low-cost producers in other regions, making it difficult to maintain profit margins.
  • Environmental and safety regulations: Foundries must comply with increasingly stringent environmental and safety regulations, which can be both time-consuming and expensive.
  • Customer demand for faster delivery: Customers are demanding shorter lead times and faster delivery, which can be difficult for traditional foundries to meet.
  • Fluctuations in production volume: Foundries are often faced with fluctuating production volumes, which can make it difficult to maintain efficiency and optimize resources.
  • technological obsolescence: Traditional foundries may struggle to keep up with technological advances, such as additive manufacturing, which may render their processes obsolete.

To overcome these challenges, many foundries are adopting new technologies, such as industrial 3D printing, to improve efficiency, reduce costs and increase competitiveness. SANDY Technology has introduced a number of specialized foundry-readySand 3D PrinterThe process covers SLS (selective laser sintering), binder jetting, and foundry partners can focus on it.

砂型鑄造3D打印機(jī)在鑄造業(yè)中的商業(yè)價(jià)值最先出現(xiàn)在三帝科技股份有限公司。

]]>
SANDI's 4-meter 3DP Sand Printer on 2024 Global Foundry Industry Innovative Technologies and Products List http://www.dollasy.com.cn/en/news/san-di-ke-ji-4-mi-3dp-sha-xing-da-yin-ji-rong-deng-2024/ Sat, 12 Oct 2024 09:12:04 +0000 http://www.dollasy.com.cn/?p=1685 October 26-28, the 75th World Foundry Conference, SANDI Technology booth B13, welcome to visit!

三帝科技4米3DP砂型打印機(jī)榮登2024全球鑄造行業(yè)創(chuàng)新技術(shù)與產(chǎn)品榜單最先出現(xiàn)在三帝科技股份有限公司。

]]>

Recently, the list of "2024 Global Foundry Industry Innovative Technology and Product Awards" was announced.Beijing SANDI Technology Co.(hereinafter referred to as "SANDY Technology") was honored as "2024 Global Foundry Industry Innovative Technologies and Products" for its self-developed large-size 3DP sand printer 3DPTEK-J4000.

The equipment breaks through the traditional processing size limitations, and can form sand molds of up to 4 meters. Innovative use of no sand box flexible area molding technology, support for local printing, only 2 meters + the price of the equipment, can be economically and efficiently realize the manufacture of sand molds of oversized (7 meters of equipment synchronization to accept reservations). At the same time, the company provides open-source material process, which can be adjusted according to the user's needs; supporting high-performance resin binder, curing agent, cleaning agent, to ensure the quality and stability of molding.

For more details, please pay attention to the "75th World Foundry Conference", which will be held in Deyang City, Sichuan Province on October 26-28, SANDY will bring 3D casting solutions (Booth No. B13) to the exhibition and make a wonderful sharing in the "2024 Global Foundry Innovation Technology and Product Launch" on the 27th. Innovative technologies and products conference" in the 27th to do wonderful sharing.

Chart:3D Casting Solutions

三帝科技4米3DP砂型打印機(jī)榮登2024全球鑄造行業(yè)創(chuàng)新技術(shù)與產(chǎn)品榜單最先出現(xiàn)在三帝科技股份有限公司。

]]>
Sand 3D Printer Buyer's Guide http://www.dollasy.com.cn/en/blogs/sand-3d-printer-buying-guide/ http://www.dollasy.com.cn/en/blogs/sand-3d-printer-buying-guide/#respond Wed, 04 Sep 2024 02:07:04 +0000 http://www.dollasy.com.cn/?p=1619 A single article gives you an in-depth look at how to buy the right sand 3D printer for your business use. From current status to cost analysis to technical guidance for your pre-purchase reference, an indispensable article.

砂型3D打印機(jī)購買指南最先出現(xiàn)在三帝科技股份有限公司。

]]>
In today's era of rapid development of manufacturing industry, traditional foundries are facing increasingly fierce market competition and constantly improving product quality requirements. As an innovative technology, sand 3D printers are becoming the key to improving competitiveness and upgrading foundries. This buyer's guide is designed to provide comprehensive, in-depth guidance to managers of traditional foundries to help them make informed purchasing decisions.

I. Understanding your own needs

Analyzing the current situation of factory production

  • Evaluation of traditional process: Carefully review the traditional casting process currently used in the factory, including the way the molds are made (e.g., wood molds, metal molds, etc.), the molding process (hand molding or machine molding), and the process of melting and pouring. Evaluate the time, labor, and material costs as well as the problems associated with each process. For example, traditional wooden mold making can take weeks and is prone to dimensional deviations and damage; hand molding is labor-intensive, inefficient and inconsistent in quality.
    • Product Characterization: Define the type of castings that the plant will mainly produce, whether they are castings with simple structures or castings with complex internal cavities, thin-walled structures or finely curved surfaces. Determine the size range of the castings, from small castings of a few centimeters to large castings of several meters. At the same time, analyze the requirements for casting accuracy, for example, certain aerospace castings may need to be millimetre accurate or even higher. In addition, the material of the casting should be considered, which may vary from material to material in terms of casting process and equipment requirements.
    • Production scale considerations: Evaluate the daily production scale of the plant, including monthly or annual casting production. Understand the characteristics of the production orders, whether it is a large number of single product production or small quantities of multi-species production. For the peak and trough production capacity changes also need to have a clear understanding, which will affect the selection of equipment and production arrangements.
3DPTEK-J1600Pro Sand 3D Printing Printer New Brand
3DPTEK-J1600Pro Sand Mold 3D Printer

Defining goals and desired improvements

  • Cost control objective: If cost reduction is the main objective, the cost composition of each link needs to be analyzed. Mold production costs account for a large proportion of the traditional process, and sand 3D printers can eliminate the mold production process, significantly reducing this part of the cost. At the same time, considering labor costs, 3D printers have a high degree of automation, which can reduce the reliance on labor. In terms of material costs, although 3D printing requires specific sand and binder, material utilization can be improved by precisely controlling the amount of material used, and waste can also be reduced through the re-cycling of sand. In addition, the 3D printing process can optimize the structure of sand molds and reduce the amount of sand used through lightweight design. For example, for a medium-sized foundry, by introducing sand 3D printers, the cost of molds may be reduced by 40%, the labor cost by 30%, and the material cost savings by about 20%.
    • Efficiency Improvement Requirement: For foundries pursuing productivity improvement, focus on the molding speed of the equipment. Sand 3D printers can print a complex sand pattern in a few hours, compared with the traditional mold making and molding weeks, a significant increase in efficiency. In addition, 3D printers can print multiple sand molds at the same time, or zone printing on a large sand mold, greatly reducing the overall production cycle. For example, after the introduction of 3D printers in an automotive parts foundry, the product development cycle has been shortened from several months to a few weeks, and production efficiency has been increased by more than 50%.
    • Quality Improvement Expectations: The ability of sand 3D printers to print with high precision is critical when higher quality products are required. It can precisely control the size and shape of the sand mold, reducing dimensional deviations and surface defects in the castings. At the same time, due to the stability and consistency of the printing process, it can improve the internal quality of castings and reduce defects such as porosity and slag entrapment. For example, in some high-end equipment manufacturing fields, the scrap rate of 3D printed sand castings has been reduced from 10% in the traditional process to less than 2%, and the product quality has been greatly improved.
    • Flexibility enhancement direction: for foundries that need to respond to small batch, multi-variety production needs or personalized custom orders, the advantages of sand 3D printer is particularly obvious. It does not need to make physical molds, can be quickly switched to produce different products according to the digital model, greatly improving the flexibility of production. For example, some art foundries or customized parts production enterprises, through the 3D printing technology can meet the diverse needs of customers, broadening the market space.

Evaluation of key features of sand 3D printers

Printing Accuracy

  • Impact of precision on casting quality: Printing precision directly determines the dimensional accuracy and surface quality of castings. High-precision printing can ensure that the dimensional deviation of the castings is within a very small range and meet the strict assembly requirements. In terms of surface quality, high-precision printing can reduce the roughness and defects on the surface of the casting and improve the appearance quality of the casting. For example, in the production of key components such as engine blocks, high-precision sand molding can ensure the precision of the fit between the piston and the cylinder block and improve the performance and reliability of the engine.
    • Choosing the right precision equipment: First, the required precision level is determined according to the design requirements and usage scenarios of the product. For some common mechanical parts, millimeter-level accuracy may be sufficient; while for high-precision castings in aerospace, medical devices and other fields, sub-millimeter or even higher accuracy may be required. Secondly, understand the precision parameters of different devices, including layer thickness and dimensional error range. You can refer to the technical information and actual test data provided by the manufacturer, while exchanging experiences with other users. For example, 3DPTEK sand 3D printers are capable of achieving a dimensional accuracy of ±0.3mm, which is suitable for the production of castings with high accuracy requirements.
    • Comparison of different precision level equipment and applicable scenarios: low-precision equipment is usually relatively low-priced, applicable to some production scenarios that do not require high precision and focus on cost control, such as ordinary construction machinery castings. Medium-precision equipment balances price and performance, and is suitable for the production of most industrial parts. High-precision equipment, on the other hand, is suitable for high-end manufacturing areas, such as aerospace, precision instruments, etc., but the price is relatively high. For example, in the production of automobile engine cylinder head, medium-precision equipment can meet the basic production requirements; for aero-engine blades and other high-precision castings, you need to choose high-precision equipment.

Print Size

  • Print size in relation to production scale and casting size: For large foundries, equipment capable of printing large castings is often required to meet production demands. For example, in the production of large ship engine block, may require several meters or even larger size printing equipment. For small foundries or production of small castings of enterprises, the smaller size of the equipment may be more economical and practical. At the same time, the print size also affects the footprint and space requirements of the equipment, which need to be taken into account in factory planning.
    • Selection strategy: according to the factory's production planning and market positioning to determine the required print size. If the main production of large castings, you need to choose a larger print size of the equipment; if the main small castings, you can choose small or medium-sized equipment. Also consider the future development needs, set aside a certain amount of capacity expansion space. In addition, pay attention to whether the equipment print size can be flexibly adjusted, for example, some equipment can be replaced by the printing platform, or even no sand box printing to adapt to the production of castings of different sizes. For example, a medium-sized foundry plans to expand into the field of large-scale casting production in the future, then in the selection of equipment, you can give priority to those with upgradable print size or modular design of the equipment in order to expand in the future according to demand.

Equipment stability and reliability

  • The importance of stable operation of equipment: in casting production, the stability of equipment is crucial. Once the equipment failure, it may lead to production interruption, affecting the delivery date, and bring great economic losses to the enterprise. Especially for the continuous production of foundry, equipment for a long time stable operation is to ensure production efficiency and product quality basis. For example, in the automotive parts casting production line, if the 3D printer frequently fails, it will lead to production line stagnation, affecting the whole car production schedule.
    • Examine methods of stability and reliability:
      • Check the manufacturer's quality control system: understand the manufacturer's production quality management process, including raw material procurement, parts processing, assembly and commissioning and other aspects of quality control measures. A manufacturer with a perfect quality control system is usually able to produce more stable and reliable quality equipment. For example, some well-known manufacturers of each component are strictly quality testing to ensure that it meets the high standards of quality requirements.
      • User Word of Mouth: Communicate with users who have already used the device to understand their evaluation of the stability and reliability of the device. The actual use experience of users is the most direct and real feedback. You can participate in industry exhibitions, join professional communities and other ways to establish contact with other users to get their opinions and suggestions. For example, some foundries will prioritize those brands with good reputation in the same industry when choosing equipment.

Software Support

  • Excellent software features and functions:
    • Model Processing: Powerful 3D printing software can efficiently process complex casting models, including model repair, optimization, slicing and other functions. For example, for some models imported from CAD software that may be defective or unsuitable for printing, the software can automatically detect and repair these defects to ensure that the model can be printed smoothly.
    • Printing parameter setting: The software should provide a wealth of printing parameter setting options, such as printing speed, layer thickness, nozzle temperature, binder dosage and so on. Users can according to different casting requirements and material properties, precise adjustment of these parameters to obtain the best printing results. For example, for thin-walled castings, it may be necessary to adjust the layer thickness and printing speed to ensure the strength and precision of the sand mold.
    • Production process management: the software should also have production process management functions, including order management, task scheduling, equipment monitoring. This can help foundries realize efficient production management and improve production efficiency. For example, through the software can real-time monitoring of the operating status of the equipment and printing progress, rationalize the arrangement of production tasks to avoid production congestion.
    • Evaluate software for ease of use, functional integrity, and compatibility with devices:
      • Ease of use: the operating interface of the software should be simple and clear, easy to get started. With an intuitive graphical interface and clear operating procedures, even non-professional technicians can quickly master. Ease of use can be assessed by trying out the software or viewing a demo video of the software in action. For example, some software adopts a wizard-type operation process, users only need to follow the prompts step-by-step operation to complete the entire printing process.
      • Functional completeness: Check whether the software has the basic functions mentioned above such as model processing, printing parameter setting, production process management, and whether there are some special features such as automatic optimization algorithms, remote control and so on. The more complete the function, the higher the applicability and flexibility of the equipment. For example, some software has intelligent optimization algorithms, which can automatically adjust the printing parameters according to the shape and structure of the casting to improve printing efficiency and quality.
      • Compatibility: Ensure that the software has good compatibility with the device and can drive the device stably for printing. Also consider the compatibility of the software with other design software, such as CAD software, for smooth model import and processing. You can check the software's technical documentation or consult with the manufacturer to find out what file formats and software interfaces it supports. For example, some software supports common file formats such as STL, OBJ, etc., and can work seamlessly with most CAD software.

III. Cost and return on investment analysis

Equipment purchase costs

  • Price range for different brands and configurations: The price of sand 3D printers varies depending on the brand, technology level, print size, accuracy and other factors. Generally speaking, the price of equipment from European and American brands is relatively high, and may be in the millions or even tens of millions of dollars; the price of equipment from Chinese brands is relatively low, and may range from hundreds of thousands of dollars to millions of dollars depending on different configurations. For example, some high-end European and American equipment with advanced technology and excellent performance, but the price is very expensive; and some of China's emerging brands of equipment in the price-performance ratio is more advantageous, such as 3DPTEK, this brand is more famous in China, the equipment is very cost-effective, while 3DPTEK operates its own almost 10 foundries, but also dozens of foundry enterprises in China to provide Equipment, it can be said that the market has been strictly verified, is a very good choice.
    • Analysis of the reasons for price differences:
      • Technology level: Advanced printing technology, high-precision control system, stable mechanical structure, etc. will increase the cost of the equipment. For example, equipment using laser sintering technology is usually more expensive than equipment using ordinary binder jetting technology, because laser sintering technology offers higher precision and better sand strength.
      • Brand influence: well-known brands usually invest more in research and development, production, after-sales service, etc., and their brand value will also be reflected in the price of equipment. Some brands with many years of industry experience and good reputation, often able to provide more reliable equipment and better service, but the price is also relatively high.
      • After-sales service: perfect after-sales service system, including equipment installation and commissioning, training, maintenance, technical support, etc., will increase the manufacturer's operating costs, which is reflected in the price of equipment. Some manufacturers provide 24-hour online technical support, rapid response maintenance services, etc., which will have an impact on the price.

operating cost

  • Cost of supplies:
    • Sand: Sand used in sand 3D printers typically needs to meet certain grain size, shape, and strength requirements. Prices for different qualities of sand vary and fluctuate with market supply and demand. For example, some high-strength, low-dust specialty sands may be relatively expensive, but can improve the quality of the sand pattern and printing results.
    • Binder: Binder is the key material to bond the sand together to form the sand mold, and its price will also affect the operating cost. Different types of binder differ in performance and price, and need to be selected according to actual needs. At the same time, the amount of binder will also affect the cost, some advanced printing technology can reduce the amount of binder used to reduce costs.
    • Energy consumption cost: the equipment will consume electricity during operation, and its energy consumption cost is related to the power of the equipment, running time, electricity price and other factors. When choosing equipment, you can focus on the energy efficiency ratio of the equipment and choose energy-saving equipment. For example, some devices use advanced energy-saving technologies that can reduce energy consumption under the premise of ensuring print quality. High-power devices usually consume more energy per unit of time, and if the device runs continuously for a long time, the cost of energy consumption will increase significantly. And the difference in electricity prices in different regions will also have an impact on the cost, such as industrial power consumption in concentrated areas may have certain preferential policies on electricity prices, need to take these factors into account to accurately assess the cost of energy.
    • Equipment Maintenance Costs: Regular maintenance and upkeep of equipment is necessary to ensure its normal operation and incurs certain costs. Including the replacement of wearing parts, equipment cleaning, calibration and other aspects of the cost. Some manufacturers will provide equipment maintenance service packages, foundries can choose according to their own situation. At the same time, the reliability and stability of the equipment will also affect the maintenance costs, low failure rate of the equipment maintenance costs are relatively low. For example, some equipment using high-quality components and advanced design, reducing the frequency of replacement of wear parts, reducing maintenance costs.

Return on investment assessment

  • Cost savings analysis:
    • Mold Cost Savings: As mentioned earlier, the cost of making molds in a traditional casting process is high, whereas sand 3D printers eliminate the need to make physical molds, which can significantly reduce this cost. Mold cost savings can be assessed by calculating the difference between the cost of making a traditional mold and the cost of 3D printing a sand mold. For example, a complex casting can cost tens of thousands of dollars to make the mold, whereas with a 3D printed sand pattern, this cost can be reduced by more than 80%.
    • Labor Cost Savings: Due to the high degree of automation in 3D printers, the reliance on labor is reduced. Labor cost savings can be calculated by comparing the amount and cost of labor in a traditional process to the labor requirements with the adoption of 3D printing. For example, a traditional casting line may require dozens of workers for mold making, molding, etc., whereas with the adoption of 3D printers, only a few operators may be needed for equipment monitoring and maintenance, and labor costs can be reduced by about 50%.
    • Material Cost Savings: Material costs can be reduced by accurately controlling the amount of material used and improving material utilization. For example, while traditional molding processes may produce large amounts of waste sand and scrap, 3D printing can reduce waste by accurately controlling material usage based on the model. At the same time, some 3D printed materials can be recycled, further reducing costs.
    • Increased revenue from efficiency gains:
      • Reduced cycle time: Sand 3D printers can significantly reduce product development and production cycles. For some products that need to be on the market urgently, early delivery can result in a higher market price and competitive advantage. The value of the efficiency gains can be assessed by calculating the additional benefits of delivering products earlier. For example, by adopting 3D printing technology, an automotive parts foundry shortened the development cycle of new products from 6 months to 2 months, and entered the market ahead of schedule, gaining a higher market share and sales revenue.
      • Increased capacity: Efficient operation of the equipment and rapid prototyping capabilities can increase the capacity of the plant, thereby increasing sales revenues. The increased capacity and corresponding sales revenue can be projected based on the plant's production schedule and market demand. For example, if a foundry was producing 1,000 castings per month and the introduction of 3D printers increased capacity to 1,500 castings, and assuming a profit of $100 per casting, the increase in profit would be $50,000 per month.
    • Calculation of the payback cycle: The feasibility of the investment is assessed by calculating the payback cycle, taking into account factors such as equipment purchase costs, operating costs, cost savings and increased revenue. The payback cycle refers to the time it takes from the time the equipment is put into use to the time it takes to recover the full investment. For example, assuming that the purchase cost of a sand 3D printer is $2 million, and that cost savings and increased revenue total $800,000 per year, the payback cycle will be about 2.5 years. The potential impact of market changes, technology updates, and other factors on the payback cycle also needs to be considered in order to make a more accurate assessment.

IV. Market research and brand selection

Collecting market information

  • Industry exhibitions: Attending foundry industry exhibitions at home and abroad is an important way to get information about the sand 3D printer market. The exhibition can directly contact with many equipment manufacturers to understand their latest products and technologies. At the exhibition, you can have in-depth communication with the technical personnel and sales staff of the manufacturers to obtain detailed product information and quotations. At the same time, you can also observe the live demonstration of the equipment, visualize the performance of the equipment and the operation process. For example, in some large international foundry exhibitions, there will be well-known manufacturers from all over the world to display their latest equipment and technology, providing foundries with a wealth of choices.
    • Professional websites: there are many professional casting equipment websites and industry forums, which gather a large amount of equipment information, user reviews and technical articles. By browsing these sites, you can understand the characteristics of different brands of equipment, user feedback and market trends. Some sites also provide equipment comparison and selection tools to help users better choose the right equipment for themselves. For example, on some professional websites, you can find detailed parameter comparisons of different brands of sand 3D printers and real user reviews, which provide reference for purchasing decisions.
    • User forums: Join user forums or communities in the foundry industry to exchange experiences with other foundry users. These users usually share their actual experience of using different equipment, the problems they encountered and the solutions. Their experiences and suggestions are very valuable for new users and can help avoid some common mistakes and pitfalls. For example, in some forums, users will share information about the actual use of the equipment, the quality of after-sales service, etc., which can provide reference for other users when choosing equipment.

Assessing brand reputation

  • Manufacturer qualifications: Check the qualification certificates and honorary awards of the equipment manufacturers to understand their status and influence in the industry. For example, some national specialties and new "small giants" enterprises, high-tech enterprises, with ISO quality management system certification, etc., these qualifications prove that the manufacturer's strength in technology research and development, production management and other aspects. Honors and awards, such as the industry's scientific and technological innovation awards, excellent product awards, etc., also reflects the manufacturer's products in the technology and quality has been recognized.
    • Production experience: Manufacturers with rich production experience are usually more secure in product quality and after-sales service. You can find out how long the manufacturer has been engaged in the production of sand 3D printers, the scale of production and past project experience. A manufacturer that has been in the industry for many years and has provided equipment and solutions to many foundries is often more trustworthy. For example, certain manufacturers have been in the 3D printing and casting field for decades and have accumulated a wealth of experience, enabling them to provide personalized solutions based on the needs of different foundries.
    • Technology R&D strength: focus on the manufacturer's technology R&D investment and innovation ability. Advanced technology is a guarantee of equipment performance and quality, whether the manufacturer has its own R & D team, patented technology and cooperation with scientific research institutions can be used as a basis for assessment. For example, some manufacturers continue to invest in R & D funds, the introduction of new printing technology and features to meet the changing needs of the market, such manufacturers are more forward-looking in technology.
    • Market share and user evaluation: Knowing the market share of the brand's equipment can reflect its popularity and competitiveness in the industry. At the same time, by checking the evaluation of other users, you can get the real feedback about the quality, performance and after-sales service of the equipment. You can search online for user reviews, consult industry experts or directly contact other foundries to learn how they feel about the use of the brand's equipment. For example, if a brand of equipment in the market has a high share and the user evaluation is generally good, then it means that the brand is excellent in all aspects.

Field trips and prototype testing

  • Field inspection: If the conditions allow, it is recommended to go to the equipment manufacturer for field inspection. You can visit the manufacturer's production workshop to understand its production process, quality control process and the advanced degree of production equipment. Observe whether the manufacturer's production management is standardized, and how the technical level and work attitude of the staff. At the same time, you can also have an in-depth communication with the technicians and managers of the manufacturers to understand their technical strength and service concept. For example, in the production workshop, you can check the assembly process of the equipment, the quality of the parts and the quality inspection link in the production process.
    • Prototype testing: Seeking to conduct prototype testing is a very important step. Prototype testing at the manufacturer or your own factory, inputting the actual casting model into the equipment, observing the printing process of the equipment, the quality of the sand mold, and the stability and reliability of the equipment. Through the prototype test, you can visualize whether the equipment meets your production needs and quality requirements. In the testing process, pay attention to record the printing time, sand accuracy, surface quality and other key data, and compare them with the technical parameters provided by the manufacturer. For example, you can prepare some representative models of complex castings for testing and observe the performance of the equipment in handling complex structures. Remember, this is very important, if you temporarily can not visit the site, even if you have to pay the cost (pieces are not big, generally manufacturers will be free to play, or at cost to help you play) but also to strive to let the manufacturer to print samples, which is the most intuitive understanding of the equipment.

V. After-sales service and technical support

After-sales service content

  • Equipment installation and commissioning: the installation and commissioning of the equipment is the basis for ensuring the normal operation of the equipment. Excellent after-sales service should include a professional installation team to ensure that the equipment can be properly installed and initial commissioning and calibration. During the installation process, the basic structure and operation methods of the equipment should be explained to the user so that the user can initially understand the equipment. For example, the installers will reasonably arrange the installation position of the equipment according to the actual layout of the factory and the production demand, and carry out the connection and debugging of electrical and mechanical aspects.
    • Training: Comprehensive training services are crucial for users. The training content should include the operating skills of the equipment, the use of software, routine maintenance knowledge and common troubleshooting methods. Training can be divided into on-site training and online training in two forms to meet the needs of different users. For example, on-site training can be carried out after the completion of equipment installation, face-to-face guidance by professional trainers; online training can be through video tutorials, online classrooms and other ways to allow users to learn anytime, anywhere.
    • Maintenance: Timely and efficient maintenance service is the guarantee of long-term stable operation of the equipment. After-sales service should include regular equipment maintenance, such as cleaning, lubrication, inspection, etc., as well as in the event of equipment failure can quickly respond and repair. Manufacturers should provide sufficient spare parts inventory to ensure that damaged parts can be replaced in a timely manner during the maintenance process. For example, when equipment malfunctions, the after-sales service team should arrive at the site within a specified period of time to diagnose and repair the problem and minimize the impact of equipment downtime on production.
    • Software upgrade: With the continuous development of technology, the software of the equipment also needs to be upgraded and optimized. After-sales service should include regular software upgrade services to improve the performance and functionality of the equipment. Software upgrades can be carried out remotely through the network or by technicians at home to ensure a smooth and safe upgrade process. For example, the new software version may add some new functions, such as optimizing printing algorithms, improving printing speed and precision, etc., to bring users a better experience.

The Importance of Technical Support

  • Solving technical problems: In the process of using the equipment, you may encounter various technical problems, such as the optimization of printing parameters, the improvement of the quality of the sand pattern, and the compatibility problems with other equipment. Professional technical support team can provide timely solutions to help users solve these problems and ensure smooth production. For example, when encountering the problem of substandard printing accuracy, the technical support staff can analyze the printing parameters, equipment status and other factors to give the corresponding adjustment recommendations to improve printing accuracy.
    • Optimized printing parameters: Different castings and production environments may require different printing parameter settings. Technical support personnel can provide optimized printing parameters according to the specific needs of the user and the actual situation, in order to achieve the best printing effect and production efficiency. For example, for some complex structure castings, technical support personnel can adjust the layer thickness, nozzle moving speed, binder dosage and other parameters according to its characteristics to improve the quality and strength of the sand mold.
    • Provide process improvement suggestions: With the accumulation of production experience and technological progress, process improvement is an important way to improve production efficiency and product quality. The technical support team can provide suggestions and solutions for process improvement according to the latest development of the industry and the actual situation of users. For example, by optimizing the production process and improving the molding method, etc., the overall production level of the foundry can be improved.

VI. Summary and recommendations

Summarize buying points and considerations

  • Clear demand: Before purchasing, you must have a clear understanding of the current production status of their own factories, product characteristics, development planning, etc., clear their needs and expectations of the direction of improvement, so that you can choose the most suitable for their own equipment.
    • Comprehensive assessment of equipment characteristics: from the printing accuracy, print size, device stability, software support and other aspects of the equipment to carry out a comprehensive assessment to ensure that the performance of the equipment can meet the production requirements.
    • Consideration of cost and return on investment: not only should we focus on the purchase cost of the equipment, but we should also give full consideration to factors such as operating costs, cost savings and increased revenues, and calculate the return on investment cycle to ensure the feasibility of the investment.
    • Emphasis on brand reputation and after-sales service: choose manufacturers with good brand reputation, rich production experience and strong technical research and development strength, and at the same time to ensure that manufacturers can provide perfect after-sales service and technical support.

Encourage informed decision-making

  • Traditional foundry in the face of equipment renewal and technological upgrading, to be brave enough to try new technologies, new equipment. Sand 3D printer as an innovative technology, can bring great changes and enhancement for the foundry. However, when making a purchase decision, we should consider all aspects of the factors, conduct sufficient market research and analysis, and manufacturers to carry out in-depth communication and exchange.

It is hoped that managers of traditional foundries can make wise purchasing decisions based on this buying guide, taking into account the actual situation of their own factories, introducing sand 3D printers suitable for them, enhancing the competitiveness of their factories, realizing sustainable development, winning the first opportunity in the wave of digital transformation, and injecting new vitality into the development of the foundry industry.

Leave a message online to get a quote for sand 3D printer

砂型3D打印機(jī)購買指南最先出現(xiàn)在三帝科技股份有限公司。

]]>
http://www.dollasy.com.cn/en/blogs/sand-3d-printer-buying-guide/feed/ 0